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ABSTRACT
 
Using a scale analysis approach, we model phase change 
(melting) for pure materials which generate internal heat for 
small Stefan numbers (approximately one). The analysis 
considers conduction in the solid phase and natural convection, 
driven by internal heat generation, in the liquid regime. The 
model is applied for a constant surface temperature boundary 
condition where the melting temperature is greater than the 
surface temperature in a cylindrical geometry. We show the 
time scales in which conduction and convection heat transfer 
dominate.  
 

NOMENCLATURE 
cp – specific heat (kJ/kg K) 
g –gravitational constant (m/s2) 
�hf – Latent heat (kJ/kg) 
H – height of cylinder (m) 
k – thermal conductivity (W/m K) 
q� - internal heat generation (W/m3) 
r – radial distance (m) 
Ra� – Rayleigh number (��g q� H5/��k) 
Raz – Rayleigh number (��g q� z5/��k) 
s – distance from CL to phase front (m) 
St – Stefan number (cp�T/�h) 
t – time (s) 
T – temperature (K) 
Tm – melting temperature (K) 
u, v, w – velocity components (m/s) 

x, y, z – spatial components (m) 
 
Greek 
� – thermal diffusivity (m2/s) 
� – coefficient of thermal expansion (1/K) 
�z – thermal boundary layer thickness (m) 
� – dynamic viscosity (kg m/s) 
	 – kinematic viscosity (m2/s) 
� - density (kg/m3) 

 – nondimensional time, ( q� /��hf) 
 
Subscripts 
A,B,C,D – regime designations 
CL – centerline 
f - fusion 
l – liquid 
s – solid 
0 – initial value 
� - freestream 
 
INTRODUCTION
Solid-liquid phase change driven by internal heat generation is 
a phenomenon encountered in many physical systems including 
geophysics, cryosurgery and materials processing among 
others. It is also encountered in nuclear systems, primarily in 
fuel rods during accident scenarios. The nonhomogeneous heat 
generation term in the energy equation makes an exact solution 
difficult to find. Complicating the solution is convection in the 
liquid phase of the material. Viskanta [1] has reviewed the 
literature regarding natural convection in melting and 
solidification processes. Early analytical studies on free 
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convection driven by internal heat generation with no phase 
change in a vertical cylinder were performed by Martin [2]. He 
used the integral method to find temperature and velocity 
profiles within the cylinder. Vajravelu [3] studied natural 
convection driven by internal heat generation in a fluid on the 
surface of a heated semi-infinite vertical plate. He found that 
the heat sources considerably increased the temperature and 
velocity fields. Daniels and Jones [4] used the method of 
matched asymptotic expansions to find steady two-dimensional 
motion generated in a shallow cavity by uniformly distributed 
internal heat sources. Their solutions showed how the Rayleigh 
number influences the shape and speeds of the convection cells 
formed in the shallow rectangular cavity. Tasaka et al. [5] 
investigated experimentally natural convection induced by 
internal heat generation, showing that the convection cells 
dilate with increasing Rayleigh number. They used 
thermochromic liquid crystals to visualize the motion of the 
convection cells. The temperature profiles show that the high 
temperature areas within the cell occur at the apexes. An 
analytical study for natural convection in a cavity of different 
aspect ratios with a uniform volumetric heat generation was 
performed by Joshi et al. [6]. They found that the horizontal 
component of the velocity is smaller than the vertical 
component near the center and walls of the cavity. They 
compared their results to computational results showing good 
agreement. Approximate solutions of phase change with natural 
convection were studied by Tien and Yen [7]. They found good 
comparisons of their analytical solutions to numerical ones for 
water-ice systems. 

The method used in this paper to study phase change 
and natural convection with internal heat generation is the scale 
analysis technique introduced by Bejan [8]. The scale analysis 
method finds order-of-magnitude estimates to get an idea of the 
behavior for physical systems.  This method has also been used 
and described by Astarita [9] to gain significant physical 
insight to various problems. Zhang and Bejan [10] used scale 
analysis to study time-dependent natural convection melting 
with conduction in the solid. They found that in the conduction 
dominated regime, the Nusselt number increases as the solid 
subcooling parameter increases. Scale analysis was also used to 
study turbulent heat transfer driven by buoyancy in a porous 
layer with homogeneous heat sources by Kim and Kim [11]. 
They found a critical Rayleigh number for the onset of natural 
convection.  

In this paper, we model natural convection driven by 
internal heat generation in the presence of internal heat 
generation. This is an extension to numerical work published 
previously [12]. 

SCALE ANALYSIS 
We begin our two-dimensional, steady-state scale analysis in 
cylindrical coordinates, using the conservation of mass, 
momentum and energy equations [13], 
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We have assumed that the heat transfer is axisymmetric. In 
Eq. (2), the Boussinesq Approximation has been used to 
eliminate the pressure term and have it replaced with the 
buoyancy term. Figure 1 shows a schematic of the geometry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic diagram of phase change in a cylinder with 
volumetric heat generation 

REGIME ANALYSIS 
Regime A 
To start the scale analysis, we begin first with a cylindrical 
material which generates internal heat. The radius of the 
cylinder is r0, and the surface of the cylinder is kept a constant 
temperature, T0 <  Tm. Since the material generates internal 
heat, the temperature profile within the material is parabolic 
with its maximum at the centerline [13]. If the internal heat 
generation is large enough, the material first begins to melt 
along the centerline. Figure 2 gives a schematic of material 
during Regime A. 
 We first consider the case where a thin layer of 
material just starts to melt along the centerline, and in this early 
part of the melting process, there is no convection in the liquid. 
The melting temperature of the material is Tm, and the 
temperature in the liquid is assumed to be constant at the 
melting temperature. 
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Figure 2. Schematic diagram of Regime A. 
 
 
In general, along the solid-liquid interface [14], 
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For a constant temperature in the liquid (no heat transfer occurs 
since T0 = Tm), Eq. (4) becomes, 
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From Crepeau and Siahpush [15], the slope of the temperature 
profile within the solid region is, 
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Substituting Eq. (6) into Eq. (5) and reducing gives, 
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We now perform a scale analysis in cylindrical coordinates [8], 
comparing relative sizes of the terms in Eq. (7). The scaled 
form of Eq. (7) becomes, 
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Since the diameter of the melted region is small compared to 
the radius, 0s r� , (terms having ln(s/r0) are small) we find, 
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At tA, Regime A disappears. In this regime, the thickness of the 
liquid is small and in a very short period of time, the 
temperature of the thin layer of liquid will be above the melting 
point of the material. At this point, heat transfer in the liquid 
begins. 
 
Regime B 
In this regime, the melted portion has grown, but heat transfers 
only by conduction in both the solid and liquid regions. The 
liquid layer remains relatively thin. Figure 3 shows Regime B. 
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Figure 3. Schematic of Regime B. 
 
For 2 2

0s r� , the interface equation, Eq. (7), scales as, 
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For small Stefan numbers and � �0ln / 1s r � , the distance to the 
phase change interface, s, becomes, 
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The nondimensional time is then defined as, 
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Regime C 
In the previous regime, heat transferred solely by conduction in 
both the liquid and solid phases. Regime C begins when 
convection starts in the liquid portion of the melt. Figure 4 
shows the state of the system during Regime C.  Experimental 
evidence [16] shows that convection in the liquid begins along 
the top portion of the cylinder and along the bottom of the 
cylinder, heat transfers by conduction. It should be noted that in 
the convection upper zone, the thermal boundary layer 
thickness (�z) is of the same order of magnitude as the gap 
thickness of the lower conduction zone (s) and the liquid 
thickness, z s�  . 
 
We can scale the terms in Eqs. (1-3), the conservation of mass, 
momentum and energy, respectively, in the following way, 
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All of the properties in Eq. (14) are for the liquid phase. For 
conduction in the liquid, 
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The scaled energy equation then reduces to, 
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Figure 4. State of the system during Regime C. 

 
In the upper portion under steady-state conditions, we get, 
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The term w2/H goes to zero since the velocity in the z-direction 
is small compared to H. The governing equations become, 
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For a Rayleigh number defined for convection driven by 
internal heat generation, [17] 
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The height of the upper convection zone is given by z. When 
z = H, convection heat transfer then dominates in the liquid 
phase. And taking a ratio between the two, 
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Regime C ends when z = H. Note that Eq. (13) will give the 
same value for s since in the convection in the upper zone, the 
thermal boundary layer thickness (�z) is of the same order of 
magnitude as the gap thickness of the lower conduction zone 
(s). 
 
From Eq. (13) and the scale of the z-momentum equation, 
Eq. (18), the scale of the velocity in the z-direction becomes, 
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Substituting into the scaled energy equation, 
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From Martin [17], 
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Substituting in Eq. (22) and reducing, we find, 
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If s � �z, and z � H, substituting Eq. (24) into Eq. (13) and 
rearranging terms, we get the non-dimensional time, 
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Inserting from Eq. (12), we get the time where Regime C ends, 
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Regime D 
In the final regime, the convection that began in the upper 
portion of the cylinder has now expanded to include the liquid 
throughout the cylinder. As before, heat transfers solely by 
conduction in the solid phase. Figure 5 gives the schematic of 
Regime D. 
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Figure 5. Schematic of Regime D. 
 
We start with the solid-liquid interface equation Eq. (4), and the 
temperature gradient within the solid phase, Eq. (6) so that the 
scales of the governing equations become as Eq. (18), with �z 
replaced by the distance to the phase change front s, 
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Substituting and rearranging into the scaled form of the energy 
equation gives, 
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From [17], 
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Substituting Eq. (29) into Eq. (28), we obtain, 
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Solving for s and inserting the definition of the Rayleigh 
number Eq. (19), we get, 
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This compares to Eq. (24) when z = H, and at this point 
convection occurs completely throughout the liquid. At this 
value of s, Regime D begins. 
 
By introducing the following nondimensional variables, 
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The interface equation, (Eq. (4)) becomes, 
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Equation (33) can be solved numerically to evaluate s�  at a 
given time, �. 

RESULTS AND APPLICATION 
We then wish to apply the scale analysis given above to the 
case of the melting problem of UO2. El-Genk and Cronenberg 
[18] gave the properties of UO2 which are used in this scale 
analysis and are listed in Table 1. 
 Figure 6 shows the results of the scale analysis for 
UO2. In Regime A, the material just starts to melt along the 
centerline and in this early part of the melting process, there is 
no convection in the liquid and the temperature in the liquid is 
assumed to be constant at the melting temperature. The 
thickness of the liquid is very small and in very short period of 
time, the temperature of thin layer of liquid will be above 
melting point of the material and Regime B starts. Equation 9 
indicates that Regime A ends at approximately 4 seconds. 
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Table 1. UO2 properties 

Melt temperature  Tm = 2877°C 
Heat of fusion �hf = 65.543 cal/gm 
Specific heat of solid cps= 0.579 cal/gm°C 
Specific heat of liquid cpl = 0.1194 cal/gm°C 
Thermal conductivity of 
liquid 

kl = 5.97 x 10-3 cal/cm°C sec 

Thermal conductivity of 
solid 

ks= 5.97 x 10-3 cal/cm°C sec 

Density of solid �s=10530 kg/m3 
Density of liquid �l=8811 kg/m3 
Viscosity � = 0.988 x 10-2 

exp(4620/(T+273)) gm/cm sec 
Volumetric internal heat 
generation 

Qvol=2.15 cal/cm3sec 

 
For our geometry, we used: 
 
 H = 0.5 m 
 ro=0.1 m 
 
 
In Regime B, the melting process is governed strictly by 
conduction heat transfer in both liquid and solid phases. The 
heat transfer across the very thin liquid film is absorbed by the 
latent heat of fusion at the solid-liquid interface. The 
conduction regime disappears in a relatively short time after the 
beginning of the experiment. From Eq. 16, we can evaluate the 
melt thickness or fusion radius. For UO2, this regime end at 
approximately 34 seconds.  

Regime C begins when convection starts in the liquid 
portion of the melt and at the interface, the convection heat 
transfer rate balances the rate at which latent heat is released 
from the interface. Experimental evidence [16] shows that 
convection begins along the top portion of the cylinder.  
Regime C ends when z = H. Equation (25) shows that this 
regime ends at 34 seconds which coincides with the end of 
Regime B. 

Regime D begins once the transition/mixed regime 
ends and the quasi-steady convection zone fills the entire liquid 
space of height H. In this regime, the heat transfer and location 
of the melting front are controlled by the convection 
contribution. The conduction in liquid is much smaller than the 
convection and it will disappear. Equation (7) was used to get 
the portion of the curve for Regime D in Figure 6. This regime 
ends at 425 seconds and all the material is in liquid phase. 
 

 
  
Figure 6. Plot of Regimes A, B, C, and D for the melting of 
UO2. 
 

CONCLUSIONS
The object of scale analysis is to use the basic principles of 
convection heat transfer in order to produce order-of-
magnitude estimates for quantities of interest (in our case 
radius of fusion). When used in conjunction with experimental 
data, the scale analysis can also be used as a framework for the 
development of correlations, relating the independent and 
dependent variables associated with the phenomena. The key to 
the correct correlation of natural convection melting is the 
identification of the proper scales of the phenomena in order to 
construct appropriate correlations for the heat transfer and the 
melting rate. 

Using this method, we model phase change (melting) 
for materials which generate internal heat for small Stefan 
numbers (approximately one). The analysis considers 
conduction in the solid phase and natural convection, driven by 
internal heat generation, in the liquid regime. The model is 
applied for a small Stefan number with constant surface 
temperature boundary condition in a cylindrical geometry.  

We identified four different melting regimes and 
demonstrated the time scales in which conduction and 
convection heat transfer dominate. For high values of 
volumetric heat generation rate, after short period of time, 
convection in liquid dominates the heat transfer mode. 
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